Introduction to Exponential and Logarithmic Functions Notes

Exponential Function: A function of the form $y = a \cdot b^x$, where $a \neq 0, b > 0$, and $b \neq 1$.

**Exponential Functions are functions whose equations contain a variable in the exponent!!

Exponential Functions have the following characteristics:

- The functions is continuous and one-to-one
- The domain is the set of all real numbers
- The x-axis is an asymptote of the graph.
- The range is the set of all positive numbers if a > 0 and all negative numbers if a < 0.
- The graph contains the point (0, a). That is the y-intercept is a.
- The graphs of $y = ab^x$ and $y = a(\frac{1}{b})^x$ are reflections across the y-axis.

examples:		NOI Examples
$f(x) = 2^x$		$f(x) = x^2$
$g(x) = 10^x$		$\varphi(x) = 1^x$
$h(x) = 3^{x+1}$	·	$h(x) = x^x$

<u>Logarithmic Function</u>: The function $x = log_b y$, where b > 0 and $b \ne 1$, is called a logarithmic function. This function is the inverse of the exponential function $y = b^x$ and has the following characteristics:

- The function is continuous and one-to-one.
- The domain is the set of all positive real numbers.
- The y-axis is an asymptote of the graph.
- The range is the set of all real numbers.
- The graph contains the point (1, 0). That is the x-intercept is 1.

<u>Logarithm</u>: In general, the inverse of $y = b^x$ is $x = b^y$. In $x = b^y$, y is called the <u>logarithm</u> of x. It is usually written as $y = log_b x$ and is read "y equals log base b of x."

**The inverse function of the exponential functions with base b, is called the logarithmic function with base b. For x > 0, b > 0, $b \neq 0$,

$$b^x = y$$
 $\Rightarrow x = \log_b y$

II. Rewriting in both forms.

Example 1) Rewrite logarithmic each equation in its equivalent exponential form.

a.
$$\log_5 x = 2$$

$$d. 3 = \log_b 64$$

b.
$$\log_3 7 = y$$

$$e. 3 = \log_7 x$$

e.
$$3 = \log_7 x$$

c.
$$2 = \log_b 25$$

$$f_1 \log_4 26 = 3$$

f.
$$\log_4 26 = y$$

Example 2) Rewrite each exponential equation in its equivalent logarithmic form.

a.
$$12^2 = x$$

$$a. 12^2 = x \qquad | b \otimes_{12} \times = 2.$$

b.
$$2^5 = x$$

c.
$$8^3 =$$

c.
$$8^3 = c$$

f.
$$4^{y} =$$

f.
$$4^y = 9$$

$$\int \mathcal{V}_{4} \mathcal{V} = \mathcal{V}_{4}$$

Basic and Inverse Log Properties- Because logs are exponents, they have properties that can be verified using the properties of exponents.

Basic Properties:

1.
$$\log_b b = 1$$
 because $b^1 = b$

$$1. \log_b b^x = x$$

2.
$$\log_b 1 = 0 \text{ because } b^0 = 1$$

$$2. b^{\log_b x} = x$$

Example 3) Evaluate using the log properties.

a.
$$\log_7 7$$

b. log₅1 👙 🗘

c. $\log_4 4^5$

d. log₇ 78 : 5

common Logarithm: Base 10 Logarithm, usually written without the subscript 10.

 $\log_{10} x = \log x$, x > 0. Most calculators have a LOG key for evaluating common logarithms. The calculator is programmed in base 10.

Example 4) Find the value of each log. Round to the nearest ten-thousandths.

a. log 81,000 = 4,9085

c. log 0.35 = - 1569

b. log6 : 1782.

d. log 0.0027 🗧 ⊷ 🤰 , 🖽 💸 🛴

Evaluating Logs using the Change of Base Formula

For all positive numbers, a, b, and n, where $a \neq 1$ and $b \neq 1$,

$$\log_a n = \frac{\log_b n}{\log_b a}$$

Example:
$$\log_5 12 = \frac{\log_{10} 12}{\log_{10} 5}$$

This formula allows us to evaluate a logarithmic expression of any base by translating the expression into one that involves common logarithms.

Example 5) Evaluate each logarithm

a.
$$\log_3 18$$

I. Solving for variables with exponentials and logs.

****MAY HAVE TO REWRITE AND APPLY PROPERTIES OR CHANGE OF BASE FORMULA!!!

Example 6) Solve for the variable:

$$a. \quad \log_3 243 = y$$

b.
$$\log_9 x = -3$$

18 × 8

Ma ax

$$c. \log_8 n = \frac{4}{3}$$

16:17

Example 7) Evaluate:

a.
$$\log_8 8^4 = x$$

b.
$$\log_{9} 9^2 = v$$

Example 8) Solve each log equation. Be sure to check your answers!

a.
$$\log_3(3x - 6) = \log_3(2x + 1)$$

b.
$$\log_6(3x-1) = \log_6(2x+4)$$

c.
$$\log_8(x^2 - 14) = \log_8(5x)$$

d.
$$\log_4 x^2 = \log_4 (4x - 3)$$

2-14:-52 You can't take 22:-44:-3 a log of negative 2:-114:3:00 2.54.111:0 Avaiber...ener! 2:-114:3:00 (x-32(x-1)):0

(x. 1) (x. 2) x ()

 $e. \log_5(x-7) = 2$

 $f. \log_2(4x + 1) = 5$

Krs Krl

M	طحما	
[1	lath	

Notes: Intro to Logarithms

Name			
	Unit 4	Day 2	2

Solving $t = 3^{20}$ on the calculator is much easier than solving $3^t = 20$. Why?

When the unknown is in the exponent and it is not easy to make the bases equal, we need to be able to re-write the equation into a form solved for the exponent.

	K 21 – 20	
	If $3^{c} = 20$, put in your own words what this equation should mean: $t = \frac{15 + 10}{15} = \frac{15 + 10}{10} = \frac{100}{10} = \frac{100}{100} = \frac{100}{100$	TI GATE
=2,72	Definition of Logarithm with Base b Let b and y be positive numbers with $b = 1$. Angument	
بـــــــــــــــــــــــــــــــــــــ	Let b and y be positive numbers with $b=1$. The logarithm of y with base b is denoted by: $OQ(U)$	
0 0 0 0	$\frac{100, (y) = x}{\text{(logarithmic form)}} \text{ if and only if } \frac{0^{x} = y}{\text{(exponential form)}}$	
9 9 9	(logarithmic form) (exponential form)	
	x = log y is read X equals log base b of u	
•	The numbers that appear have special names:	

is the argument

_____ is the logarithm (the exponent)

_ is the base

	Review the re	estrictions on b and	x in the defini	tion above. Ex	plain why each	is necessary:		
	l) b ≠ l :	1 to any	1 power	is 1, Se	X Cov	eld be an	uthina	
XZI	2) b > 0 :	logs are	only de	fined f		ve real		4= 102-6 B
(-15)=	ر3) y > 0 :	impossible	to tal	20 109	of 'n n.	eartive 1		J J
5	re	no Solution	for nego	tive and	ment	J		Lun = 12

Rewrite the following equations in the missing form.

	Logarithmic Form	Exponential Form		
1.	log ₂ 8 = 3	23=8		
	log41=0	2. 4° = 1		
3.	log ₁₂ 12 = 1	121=12		
	10g i 4 = -1	$4. \qquad \left(\frac{1}{4}\right)^{-1} = 4$		
5.	$\log_{\frac{1}{2}} 32 = -5$	$\left(\frac{1}{2}\right)^{-5} = 32$		
	100/3 81=4	6. 3 ⁴ = 81		

* Ask yourself- what power of b gives you y?

	Ask yourself- what power of L			<u> </u>		
	7. log, 64 er 41/264	8. $\log_2 \frac{1}{16} =$	9.	log 27		
	11x=12			in By	-	
	for some file			· · ·	-	
				•		
				•		
٠.,	10. log,1 = 0	11. log ₅ 5 ==	12.	log ₃₆ 6 = 1		
				36		
				•		
		·				
	13. $\log_2 \frac{1}{128} = -7$	14. log ₃₂ 2 = 7	$ \frac{1}{5} $	log ₈ 8⁴ = 4	a je	
			,			
		•	· .			
			·			
-				• • •	.	

SPECIAL LOGARTIHMS

Common Logarithm	Natural Logarithm
> Logarithm with base 10	> Logarithm with base e
> Denoted by: 10916 X	> Denoted by:loge X
> Simplified Notation: 159 X	> Simplified Notation: Ln X

Special Note: your calculator has keys for evaluating the common and natural logarithm.

Evaluate each logarithm without a calculator.

6. log 1000	17. $\ln e^7$	18 los 1
2	[]	$18.\log\frac{1}{10000}$
su _m od	i i	

Evaluate each logarithm *with a calculator*.

9. In 14 2. 64,	20. log 580 2.76	21. $\frac{\ln 15}{2 - \ln 10} = -8.95$
50 e2.64 = 14		

We now know that a logarithm is perhaps best understood as being closely related to an exponential equation. In fact, whenever we get stuck in the problems that follow we will return to this one simple insight.

- When working with logarithms, if ever you get stuck, try rewriting the problem in exponential form.
- Conversely, when working with exponential expressions, if ever you get stuck, try rewriting the problem in logarithmic form.

Think:

Type of problem? Variable is in the exponent

Technique: Try to make bases equal Then set exponents equal and solve for Variable.

22)
$$\log_5 \frac{1}{25} = y$$

*23)
$$\log_7 7^2 = x$$

*24)
$$\log_3 1 = X$$

What if the variable is not the exponent??

Find the base, x, of the logarithm without calculator:

25)
$$\log_{x} 2 = \frac{1}{3}$$

 $(x^{1/3})^{\frac{1}{3}}(2)^{\frac{3}{3}}$

26)
$$\log_{x} \frac{4}{9} = \frac{2}{3}$$

$$\left(x^{2}\right)^{\frac{3}{2}} = \frac{2}{3}$$

$$\left(x^{2}\right)^{\frac{3}{2}} = \frac{2}{3}$$

$$x = \frac{8}{2}$$

Think:

Type of problem? Variable is the base.

Technique: Raise both sides to <u>Vectovica</u> power and solve for the variable.

Question:

Will the value of x be + and -?

Find the argument, x, of the logarithm without calculator:

$$30) \log_{25} x = \frac{3}{2}$$

Question: Will the value of x be + and -?

$$25^{3/2} = x$$

Solve for x:

*31)
$$\log_8(7x - 9) = \log_8(2x + 1)$$

Evaluate without a calculator:

Honors CC3

Notes: Properties of Logarithms

Name: Date:

Recall:

2 - 1.1 D. . . .

$$x = b^{y}$$

 $x = b^{y}$ is equivalent to

$$\log_b(x) = y$$

I. Rewrite each of the following in logarithmic form.

$$1. \ 3^4 = 81 \ | \log 8| = 4$$

$$2.2^6 = 64$$
 00 $64 = 6$

1.
$$3^4 = 81$$
 $| \log 8 | = 4$ 2. $2^6 = 64$ $| \log 64 | = 6$ 3. $5^3 = 125$ $| \log 125 = 3$

4.
$$8^0 = 1$$
 $\frac{150}{8} = 0$

4.
$$8^{\circ} = 1$$
 $\log 1 = 0$ 5. $4^{-2} = \frac{1}{16}$ $\log \frac{1}{16} = -2$ 6. $3^{-1} = \frac{1}{3}$ $\log \frac{1}{3} = -1$

6.
$$3^{-1} = \frac{1}{3}$$
 $\sqrt{3} = -1$

7.
$$7^{-2} = \frac{1}{49} \frac{\log \frac{1}{49} = -2}{\sqrt{7}}$$

$$8. \ 3^{\frac{1}{2}} = \sqrt{3} \quad \log \sqrt{3} = 2$$

7.
$$7^{-2} = \frac{1}{49} \frac{\log \frac{1}{49} = -2}{\sqrt{7}}$$
 8. $3^{\frac{1}{2}} = \sqrt{3} \frac{\log \sqrt{3} = \frac{1}{2}}{\sqrt{3}}$ 9. $9^{\frac{3}{2}} = 27 \frac{\log 27 = \frac{3}{2}}{\sqrt{9}}$

II. Rewrite each of the following in exponential form.

1. $\log_2 32 = 5$ 2. $\log_8 64 = 2$ 82=64

1.
$$\log_2 32 = 5$$
 $2^5 = 32$

$$\frac{1}{2} \log_8 64 = 2 \frac{8^2 = 64}{1}$$

4.
$$\log_5 1 = 0$$
 $5^\circ = 1$

4.
$$\log_5 1 = 0$$
 $5^{\circ} = 1$ 5. $\log_3 243 = 5$ $3^{\circ} = 243$

3.
$$\log_{11} 121 = 2 \frac{11^2 = 121}{1}$$

6. $\log_{\frac{1}{2}} 16 = -4 \frac{(\frac{1}{2})^{4} = 16}{2}$

7.
$$\log_8 4 = \frac{2}{3} + 3 = 1$$

7.
$$\log_8 4 = \frac{2}{3} \frac{8^{2/3} = 1}{3} = \frac{1}{3} = \frac{1}{$$

III. Solve for x in each of the following equations.

1.
$$\log_{x} 64 = 3$$
2. $\log_{x} 49 = 2$

$$\chi^{2} = 49$$

$$2. \log_{x} 49 = 2$$

$$\chi = 4$$

3.
$$\log_6 x = 2$$
 36

$$4. \log_9 x = -1$$

5.
$$\log_{\frac{1}{2}} 16 = x$$

5.
$$\log_{\frac{1}{2}} 16 = x$$
 $X = 0$
 $\log_{\frac{1}{2}} \log_{\frac{1}{2}} \log_{\frac{1}$

log BASE

7.
$$\log_{x} 8 = 1$$

7.
$$\log_x 8 = 1$$
 8. $\log_5 x = -2$ 125

10.
$$\log_2 x = -4$$

11.
$$\log_x \sqrt[3]{7} = \frac{1}{3}$$

$$5^{x} = 5^{1/2}$$
12. $\log_{\frac{1}{2}} x = 3$

$$\left(\frac{1}{2}\right)^3 = X$$

$$\chi^{1/3} = \eta^{1/3}$$

Properties of Logarithms

Expand each logarithm.

1)
$$\log (6 \cdot 11)$$

$$\log 6 + \log 11$$

2)
$$\log (5 \cdot 3)$$

$$\log 5 + \log 3$$

3)
$$\log\left(\frac{6}{11}\right)^5$$

$$5\log 6 - 5\log 11$$

5)
$$\log \frac{2^4}{5}$$

$$4\log 2 - \log 5$$

7)
$$\log \frac{x}{y^6}$$

$$\log x - 6\log y$$

9)
$$\log \frac{u^4}{v}$$

$$4 \log u - \log v$$

11)
$$\log \sqrt[3]{x \cdot y \cdot z}$$

$$\frac{\log x}{3} + \frac{\log y}{3} + \frac{\log z}{3}$$

4)
$$\log (3 \cdot 2^3)$$

$$log 3 + 3log 2$$

6)
$$\log \left(\frac{6}{5}\right)^6$$

$$6 \log 6 - 6 \log 5$$

8)
$$\log (a \cdot b)^2$$

 $2\log a + 2\log b$

10)
$$\log \frac{x}{y^5}$$

$$\log x - 5\log y$$

$$12) \log (x \cdot y \cdot z^2)$$

$$\log x + \log y + 2\log z$$

Condense each expression to a single logarithm.

13)
$$\log 3 - \log 8$$

$$\log \frac{3}{8}$$

$$14) \frac{\log 6}{3}$$

$$\log \sqrt[3]{6}$$

15)
$$4\log 3 - 4\log 8$$

$$\log \frac{3^4}{8^4}$$

17)
$$\log 7 - 2\log 12$$

$$\log \frac{7}{12^2}$$

18)
$$\frac{2 \log 7}{3}$$
 $\log \sqrt[3]{7^2}$

19)
$$6\log_3 u + 6\log_3 v$$

 $\log_3 (v^6 u^6)$

21)
$$\log_4 u - 6\log_4 v$$

$$\log_4 \frac{u}{v^6}$$

22)
$$\log_3 u - 5\log_3 v$$

$$\log_3 \frac{u}{v^5}$$

23)
$$20\log_6 u + 5\log_6 v$$

 $\log_6 (v^5 u^{20})$

24)
$$4\log_3 u - 20\log_3 v$$

$$\log_3 \frac{u^4}{v^{20}}$$

Critical thinking questions:

25)
$$2(\log 2x - \log y) - (\log 3 + 2\log 5)$$

 $\log \frac{4x^2}{75y^2}$

26)
$$\log x \cdot \log 2$$
 Can't be simplified.

Solving Exponential Equations Notes

How do I solve exponential equations when the bases are the same?

How do I solve exponential equations when the bases are different?

				7.5	•	7.
2-4 =		$3^{-4} = 1/61$	4-4 = 1/256	5-4 = 1/625	6-4 = 1/1296	$7^{-4} = 1/_{2}$ tol
2 3 =	1/8	$3^{-3} = 1 27$	4-3 = 1/64	5-3 = 1/105	$6^{-3} = 1/216$	7-3 = 1/343
2 ⁻² =	1/4	$3^{-2} = 1/q$	4-2 = 1/16	$5^{-2} = 1/25$	$6^{-2} = \frac{1}{3}$	7-2 = /49
$2^{-1} =$	1/2	$3^{-1} = 15$	$4^{-1} = 1$	5-1 = 1/6	$6^{-1} = 1/6$	$7^{-1} = 1$
$2^{0} =$		$3^0 = 1$	$4^0 = 1$	5° =	60 = 1	7 ⁰ = \
$2^1 =$	2	$3^1 = 3$	$4^1 = 1$	5 ¹ = 5	61 = 6	71 = 17
$2^2 =$	4	$3^2 = Q$	$4^2 = 16$	$5^2 = 25$	$6^2 = 36$	7 ² = 40
$2^3 =$	8	$3^3 = 27$	43 = 64	$5^3 = 125$	$6^3 = 210$	⁷³ = 343
24 =	16_	34 = 81	44 = 256	54 = 625	64 = 1296	$7^4 = 2401$
$2^{5} =$	32	3 ⁵ = 243	45 = 1024	55 = 3125		
$2^6 =$	64	36=729	46 = 4096	*		
$2^7 =$	128	37=2187				

Exponential Equations Not Requiring Logarithms

Solve each equation.

1)
$$4^{2x+3} = 1$$

 $\left\{-\frac{3}{2}\right\}$

2)
$$5^{3-2x} = 5^{-x}$$

{3}

3)
$$3^{1-2x} = 243$$

{-2}

4)
$$3^{2a} = 3^{-a}$$

-{0

5)
$$4^{3x-2} = 1$$

 $\left\{\frac{2}{3}\right\}$

6)
$$4^{2p} = 4^{-2p-1}$$

 $\left\{-\frac{1}{4}\right\}$

7)
$$6^{-2a} = 6^{2-3a}$$

{2}

8)
$$2^{2x+2} = 2^{3x}$$

{2}

9)
$$6^{3m} \cdot 6^{-m} = 6^{-2m}$$

{0}

10)
$$\frac{2^x}{2^x} = 2^{-2x}$$

{0}

11)
$$10^{-3x} \cdot 10^x = \frac{1}{10}$$

 $\left\{\frac{1}{2}\right\}$

12)
$$3^{-2x+1} \cdot 3^{-2x-3} = 3^{-x}$$

 $\left\{-\frac{2}{3}\right\}$

Solving Exponential Equations with Logarithms

Date______ Period____

Solve each equation. Round your answers to the nearest ten-thousandth.

1)
$$3^b = 17$$

2.5789

2)
$$12^r = 13$$

1.0322

3)
$$9^n = 49$$

1.7712

4)
$$16^{\nu} = 67$$

1.5165

5)
$$3^a = 69$$

3.854

6)
$$6^r = 51$$

2.1944

7)
$$6^n = 99$$

2.5646

8)
$$20^r = 56$$

1.3437

9)
$$5 \cdot 18^{6x} = 26$$

0.0951

10)
$$e^{x-1} - 5 = 5$$

3.3026

11)
$$9^{n+10} + 3 = 81$$

-8.0172

12)
$$11^{n-8} - 5 = 54$$

9.7005

Solving equations with logarithms on both sides of the equation (no constants).

Property of Equality:

Cancel the log on both sides

a.
$$\log_6 x = \log_6 5$$

b.
$$\log_3(x-1) = \log_3(2x+5)$$

x-1=2x+5

solution

c. $\log(p^2 - 2) = \log p$

e. $\log(x+3) - \log(2x-4) = \log 3$

* Usu count

nomber

d. $\log_3 x + \log_3 (x - 6) = \log_3 16$

 $| fg \times (X-L) = | of 3 | fg \times (X-8)(X+2) = 0$ $x^2 - lox = 16$

10% 2x-4 = 10g 3

3(2x-4)=x+3

6x-12=X+3

Steps: x2-6x-16=0

1. Simplify all of the logarithms using the properties of logarithms.

2. If all of the bases are the same, then use the equality property of logarithms.

3. Solve and check for extraneous solutions b>0 and x>0 for

Practice

1. $\log_2(8-6x) = \log_2 32$

8-lox = 32

-6x = 24

(x=-4)

3. $\log_4(x+3) - \log_4(x-5) = \log_4 16$

1004 X+3 = 1004 16

16 (K-5)= X+3 16x-80=X+3

5. $\log_7(x+2) + \log_7(x+1) = \log_7 6$

1/97 (X+2)(X+1) = 10/76

x2+3x+2=6

v2-124-4=0

(X+4XX-D=0

7. $2\log_3 x^2 = \log_3 4 + \log_3 (x+8)$

1093 x2 = 1093 4(x48)

x2 = 4x+32

42-4X-32=0

(x-8)(x+4)=0

2. $\log_{10}(x+9) + \log_{10} x = \log_{10} 10$ X = V

4. $\log_2(x+3) + \log_2(x-3) = \log_2 16$ X=5

6. $\log_6(x+3) + \log_6(x+2) = \log_6 20$ $\chi = 3$

8. $(2\log_b(t) - \log_b 2 = \log_b(2t + 6)$

2. log = log (2++6).2

+2= 4E+12

+2-44-12=0 a - it in the

Solving equations with logarithms on one side of the equation (constants are visible).

Examples:

Convert to exponentials

a.
$$\log_3(x-7) = 2$$

 $2^3 = x-7$

$$9 = x - 7$$

b.
$$\log_{12}(2x-1) + \log_{12}(x-3) = 1$$

$$\log_{12}(2x-1)(x-3)=1$$

$$12' = (2x-1)(x-3)$$

$$12 = 2x^{2} - 6x - x + 3$$

$$0 = 2x^{2} - 7x - 9$$

$$(x = 4^{1/2})$$

70=(2x-9)(x+1) 2×=9

Steps:

- Use all properties of logarithms to simplify to one logarithm.
- Convert to an exponential equation.
- Solve and check for extraneous solutions b>Dand x>0 for

$$\log_b x = y$$

Practice:

1:
$$\log_2(x^2 - 9) = 4$$

$$2^{4} = x^{2} - 9$$

$$110 = x^2 - 9$$

2.
$$\log_2(y+2) - \log_2(y-2) = 1$$
 $y = 0$

$$\log_2 \frac{y+2}{y-2} = 1$$

$$2^1 = \frac{y+2}{y-2}$$

3.
$$\log_5(5x+5) - \log_5(x^2-1) = 0$$

$$5^{\circ} = \frac{5}{x-1}$$

5.
$$\log_6(x^2+2) + \log_6 2 = 2$$

$$32=2x^2$$

$$4.2\log_{3} x - \log_{3}(x-2) = 2$$

$$1083 \times \frac{k^2}{x-2} = 2$$

$$3^2 = \frac{x^2}{x-2}$$

6.
$$\log_8(x+6) + \log_8(x-6) = 2$$
 $(x=10)$

Solving Log Equations Using Properties

- $1. \ln(2x+4) = 3$
- 23 x 2 x 4 4 0 11 24
 - S. 1128= M
 - 3. $log_84x^4 log_82x^2 = 1$
 - log 3x2 = 1 4= x2
 - 1000 2x2 1 (0 = x) 81 = 2x2 (-2 = x)
 - 5. $log_3(x+10) log_3x = 4$
 - 1042 x 10 = 11 81x=x+10
- 9 34 × 10 80 80
 - 81 : X+10 (X=.1)
 - 7. $lnx + lnx^2 = 21$
 - In x(x3)=21
- 9. $log_4(x+4) + log_4(x+64) = 4$
 - log, (x41) (x461) = 4
 - U" = KAN (KAN)
 - 256 = x2 + 68x+256
 - 00 x2+68x
 - X (X468)=0
 - (Sec. 7 (O : 7)

- $2. \log_5 2 + \log_5 x = 3$
 - loga 2x = 3
 - (62.5 : X.)
- $4. \log_4(10x 8) = \log_4(x + 4)$
 - 10 V 8 5 X + 4
 - -1X:12
 - (XXX)
- 6. $log_2x + log_2(x+6) = 4$
 - 1002 x (x+6)=41 x=8.
 - 2": x(x46) (x52.)
 - 16 5 47 +6 M

 - 0 5 x2 4 6 x 16 O = (V + 8 × N - 2)
- $8. \log_7 x^2 = \log_7 (x + 20)$
 - 13 6 VI 120
 - V2 . V. 2000

 - (x-5)(x44)=0
 - (X=5)(X=-H)
- 10. ln(3x 8) = 2
 - - P-23K-3

 - e2 + 8 = 3 y
- (5.991 = N)

Solving Exponential & Logarithmic Equation	15 2
--	------

Name:	 ***
Date:	Pd:

Use the rules of exponents or logarithms to find the value of x in each equation.

1.	$(5^{x+1})^5 = 5^{25x}$	\$.90m
	55×15 = 525×	5:22%
	100	A Committee of the Comm
	5x+5 = 25x (

 $2. (9^{2x})(9^{16}) = 9^{48}$

3. $\frac{4^{50}}{4^{40}} = 4^{x-5}$

4.
$$(64^2)(16^x) = 4^{12}$$

5. $(16^{\frac{1}{2}})(2^3) = x$

1. $(16^{\frac{1}{2}})(2^3) = x$

1. $(16^{\frac{1}{2}})(2^3) = x$

5. $\left(16^{\frac{1}{2}}\right)(2^3) = x$

6. $(25^3)(5^6) = 125^{3x-2}$

7. $10^{2x-1} = 100$

 $\begin{array}{c}
32 \\
\hline
32 \\
\hline
8. -2(10)^{x+4} = -.002
\end{array}$

9. $(10)^x = 1$

10. $3(10)^{x+4} + 3 = 15$

$$3(10)^{3/4} = 17.$$

$$10^{3/4} = 17.$$

$$10g_{10} = 17.$$

$$10g_{10} = 17.$$

$$10g_{10} = 17.$$

$$13. \log_{3} x = 4$$

 $11, \frac{3}{2}(10)^{x+2} = 1,500 \cdot \frac{3}{2},$

$$10^{\text{KH2}} = 1000$$
 $10^{\text{KH2}} = 10^3$
 $10^{\text{KH2}} = 10^3$

12. $\log_5(x-14)=4$

345 X

14. $\log x = 3$

Ì	0.5	
	SPAN COLUMN	
1	000: X.	1

15. $\log_4(x+3) + 2 = 4$

112 5 V 12 16 = x+3 12 = X)

13. The population of the United States in 2006 was about 300 million and growing exponentially at a rate of about 0.7% per year. If that growth rate continues, the population of our country in year 2006 + t will be given by the function $P(t) = 300(10^{0.003t})$.

teo is the initial population of 300 million a. Explain how you can be sure that P(0)=300.

4 = 300 (10.003x) b. When is the U.S. population predicted to reach 400 million? 42 years is 400.98 william

14. The function $y = 14,000(0.8)^x$ represents the value of a car x years after purchase.

look at yell in table

a. Find how much the car will be worth in four years. 5734.40

b. When will the car be worth \$7,000?

p.
$$-5(10)^{x-9} = -5{,}000$$

q.
$$\frac{1}{2}(10)^{2x} = 50,000$$

r.
$$10^{2x} = .0001$$

s.
$$\log(x+5) = 2$$

t.
$$\log_3(4x - 3) = 4$$

u.
$$\log_x 8 = 3$$

v.
$$\log_x 144 = 2$$

w.
$$\log_4(4x) = 3$$

$$x \cdot \log(25x) = 2$$

a.
$$y = \frac{1}{2}x - 5$$

b.
$$v = 4x^2$$

c.
$$y = \sqrt[3]{x+4}$$

4. Rewrite each function in exponential form. (2 points each)

a.
$$216 = 6^x$$

b.
$$x = 12^6$$

c.
$$81 = 3^{8x}$$

5. Rewrite each function in logarithmic form. (2 points each)

a.
$$log_3243 = x$$

b.
$$log_{15}x = 3$$

d.
$$log_x 120 = 3$$

- 6. Suppose that 500 mg of a medicine enters a hospital patient's bloodstream at noon and decays exponentially at a rate of 15% per hour. The exponential function $D(t) = 500(10^{-0.07t})$ models the amount of medicine active in the patient's blood at a time t hours later, where t is time in hours. Round answers to the nearest hundredth.
 - a. Find D(0).
 - b. Find D(3).
 - c. Use logarithms to determine when there is 150 mg of medicine in the patient's blood stream.
 - d. Use logarithms to determine when there is 10 mg of medicine in the patient's blood stream.
- 7. The function $y = 12,800 (1.045)^x$ represents the value of a piece of artwork x years after purchase.
- a. How much will the artwork be worth in 15 years?

Independent Practice: Exponential Growth & Decay

1 POPULATION

In 1990, Florida's population was about 13 million. Since 1990, the state's population has grown about 1.7% each year. This means that Florida's population is growing exponentially.

Year	Population
1990	13 mil
1991	13.221 mil
1992	13 HHb mil
1993	13.7.74 mil
1994	13 510 1 WILL

a) Write an explicit function in the form $y = ab^x$ that models the values in the table.

b) What does x represent in your function?

- c) What is the "a" value in the equation and what does it represent in this context?
- d) What is the "b" value in the equation and what does it represent in this context?

2 HEALTHCARE

Since 1985, the daily cost of patient care in community hospitals in the United States has increased about 8.1% per year. In 1985, such hospital costs were an average of \$460 per day.

a) Write an equation to model the cost of hospital care. Let x = the number of years after 1985.

$$y = 460 (1.081)^{X}$$

b) Find the approximate cost per day in 2012.

c) When will the cost per day be \$1000

$$x=9.97$$
 years $y=$1000$ So at the end of 1994. When will the cost per day be \$2000?

d) When will the cost per day be \$2000?

$$X = 18.869$$
 years, $y = 2000 so at the end of 2003

3HALF-LIFE

To treat some forms of cancer, doctors use lodine-131 which has a half-life of 8 days. If a patient received 12 millicuries of lodine-131, how much of the substance will remain in the patient 2 weeks later?

4 SAVINGS

Suppose your parents deposited \$1500 in an account paying 6.5% interest compounded annually when you were born.

a) Find the account balance after 18 years.

c) What if the interest was 6.5% and was compounded monthly instead of annually.

$$\frac{9 - 1500 \left(1 + \frac{1005}{12}\right)^{120 10}}{120} = 34811.75 - \frac{4659.98}{3657.11}$$

you'd wille \$157.77 1400-C- 421124-4 1414-14-1

\$157.11 compounded mariting.

5 HEALTH

Since 1980, the number of gallons of whole milk each person in the US drinks in a year has decreased 4.1% each year. In 1980, each person drank an average of 16.5 gallons of whole milk per year.

Year	Population
1980	110.5
1981	Liny . 2
1982	17, 9
1983	(d.v
1984	161,14

a) Write a recursive function for the data in the table.

b) Write an explicit function in the form $y = ab^x$ that models the values in the x = years after 1980 table. Define your variables.

 $y = 10.5(1.041)^*$ y = gallons of milk consumedAccording to this same trend, how many gallons of milk did a person drink in a year in 1970?

6 WASHINGTON, D.C.

The model $y = 604000(0.982)^x$ represents the population in Washington, D.C. x vears after 1990.

a) How many people were there in 1990?

(204000

b) What percentage growth or decay does this model imply?

1990 decour c) Write a recursive function to represent the same model as the provided explicit function.

NEXT= NOW. 0.482 START AT 404000

d) Suppose the current trend continues, predict the number of people in DC now.

e) Suppose the current trend continues, when will the population of DC be approximately half what it was in 1990?

 y_1 y_2 y_3 y_4 y_4 y_5 y_4 y_5 y_5

Adapted from Prentice Hall Algebra I pg 437-444

Math Lab: Modeling Cancer Cells with M&M's

The purpose of this lab is to provide a simple model to illustrate exponential growth of cancerous cells.

In our experiment, an M&M represents a cancerous cell. If the M&M lands "M" up, the cell divides into the "parent" cell and "daughter" cell. The cancerous cells divide like this uncontrollably-without end.

We will conduct 7 trials and record the number of "cancerous cells" on the plate.

DO NOT EAT THE M&M's UNTIL YOU ARE DONE COLLECTING ALL DATA

Exponential Growth Procedure

- 1) Place 2 M&M's in a cup. This is trial number 0.
- 2) Shake the cup and dump out the M&Ms onto the paper plate. For every M&M with the "M" showing, add another M&M and then record the <u>new population</u>. (Ex. If 5 M&Ms land face up, then you add 5 more M&Ms)
- 3) Repeat step number 2 until you are done with 12 trials <u>OR</u> you run out of M&Ms.

	 2	3	4	5	6	7	8	9	10	11	12
# of M&M's (# of cells) 2			-			·			-		\

4) Graph your data (scatterplot) with the trial number on the x-axis and the number of M&M's on the y-axis. Label your scale.

Exponential Growth Discussion

- 5) Should your graph touch the x-axis? Why or why not?
- 6) Should your graph be just individual points, or should you connect the points? Explain. (Hint: What would an x-value of 3.5 mean in the context of the problem?
- 7) We can also use a graphing calculator to write the exponential growth equation. You will need to enter your data table from page 1 into your graphing calculator. Click STAT, and under EDIT choose Lot. A blank table should appear. Under L₁ you are going to list the trial number and under L₂ list the Number of M&Ms. (ONLY IF YOUR ALREADY HAVE DATA IN THE LISTS: To clear the lists before you begin, highlight the list name all the way at the top and press OFAR—not delete—and ENTER) Now you need to find the "curve of best fit". This will make an equation that best models your data. Go to your home screen (OFAR), click STAT, scroll right to CALC, select EXOREG, press ENTER.

 Write the exponential regression equation to three decimal places.

8) Use your exponential growth model that you created in #7 to predict the number of "cancerous cells" there would be in:

Trial 25 _____ Trial 50 ____

9) Use your exponential growth model to determine the number of trials needed to have a population of 1 billion "cancerous cells". Show your work.

- 10) Why do we all have different values for a and b?
- 11) What do a and b represent in the context of the problem?
- 12) What would the "perfect" values for a and b be?

Part II: Modeling Exponential Decay

Exponential Decay Procedure

- 13) Count the total number of M&Ms that you have. Record this number in trial # 0.
- 14) This time when you shake the cup and dump out the M&Ms onto the plate, remove the M&Ms with the "M" showing. Record the M&M population.
- 15) Continue this process and fill in the table. You are done when you have completed 7 phases —OR—when your M&M population gets to 0. Do NOT record 0 as the population, leave it blank!!!

	1		·		 			r
Trial #	0	1	2	3	4	5	6	. 7
M&M								
Population								

16) Sketch the graph representing your data. Label your scale.

Exponential Decay Discussion

- 17) In the instructions for #15 (in Part II), why do you think you are NOT supposed to reduce the number of M&Ms all the way to zero? Explain.
- 18) Using your calculator again, write the exponential regression equation to three decimal places

20) How does this number compare to your actual data for the 4th trial. Are they the same? Are they similar? What are some reasons why your results are different? Explain.

21) What would the "perfect" model be for this situation?

Name: ___

Question	Exponential Growth or Decay?	Write a function that represents this situation	Answer:
1. You buy a house for \$130,000. It appreciates	growth	Initial Amount =	130,000 (1.06)
6% per year. How much is it worth in 10 years?		Growth/Decay Rate: Percent = 6% Decimal = .06 Function that represents this situation:	\$ 232,810.20
2. Justin Beiber is losing 20%		y = 130,000 (+.06) Initial Amount =	
of his hair each year. If he currently has 1,546 hairs on his head, about how nany hairs will he have left after 10 years?	decay	546 Growth/Decay Rate: Percent = 20 Decimal = .20 Function that represents this situation: y = 1546 (120) ^X	1546 (.8)10 166 hairs
3. If you invest \$40 in an account for 10 years at a 3% interest rate compounded semi-annually, how much money will you have?	growth	Initial Amount = \$\frac{4}{1}\text{D}\$ Growth/Decay Rate: Percent = 3% Decimal = .03 Function that represents this situation: \(\frac{3}{2} \) \(\frac{4}{1} + \frac{3}{2} \) \(\frac{3}{2} \)	40(1.015) ²⁰ \$53.87
4. A population of 100 frogs increases at an annual rate of 22%. How many frogs will there be in 5 years?		Initial Amount = 00 frog S Growth/Decay Rate: Percent = 22 % Decimal = .22	100 (1.22) ⁵ 270 frags

	Exponential Growth & De	cay Class	work Name:	
			Function that represents this situation:	
`** <u>-</u>	5. A species of extremely rare, deep water fish are slowly becoming extinct. If there are a total 821 of this type of fish		Initial Amount = 82 \ Growth/Decay Rate:	
	and there are 15% fewer fish each month, how many will there be in half a year?	decag	Percent = 15% Decimal = .15 Function that represents this situation:	821 (.85) = 309 fish
			y= 821(115)x	
	6. The population of Austin is growing at a rate of 5% per year. In 2010, the population was 500,000. What would be the predicted urrent population?	growth	y=500,000 (1+.05)* 2017 K=7	500000 (1.05) 703,550 people
	7. Use the equation from the previous question and predict in what year Austin's population will first reach 1,000,000.		y= 500,000 (1.05)* Use table	15 years
t c c c c c c c c c c c c c c c c c c c	8. Carbon-14 has a half-life of 5,730 years. If a fossil that originally had 500 mg of carbon-14 s found and determined to be 27,000 years old, how much carbon-14 was eft?		$y = 500 \left(\frac{1}{2}\right)^{\frac{x}{5730}}$ $y = 500 \left(\frac{1}{2}\right)^{\frac{27600}{5730}}$	19.08 mg
t d tl	ays. Currently, here are 25 zombies. Ofter how many days will there	growth	y=25(2)2 use-table	20 days
	e 25,600 Zombiés?			(24)

Exponenti	al Gro	wth & [Decay	Note	s/Rev	iew	Nan	າe:					
GROWTH So each hour. If a minutes past	<mark>enario</mark> : T 3 zombie	here has	been a	zombie	e invasio	n The	numb	or of	zombies ombies	es inc will t	rease here	es by 4 be by 3	 5% 30
Step 1: Create				Start w	ith x=0							12.5	
X Y	3	840 2	6 9	113	5 6 19 28	7	8	85	10	178	12	12:30	
Step 2: Write a Note: *The conhas gone by.*	recursiv	ve (NOW tio is the	'-NEXT) PERCE	equation equ	on for the	e scena n as a	ario: d ecim a	al) ren		<u> </u>	<u> </u>		
	-	NEX	1400	NOW	*(\	.45	<u> </u>						
Step 3: Write a Note: *All expo	n explici nential e	t equatio equations	n for the	he form	rio: y=a*b×. 3 (= con	ımon	ratio*		,
Step 4: x = the solve the quest					that hav	/e gone	e by. C	Choos	e/subs	stitute	an x	in orde	er to
	_	.45)12	17	2.5							47		
	3(1	.45)'				Æ	nswe	r:	31	12	Zon	nbie	S
DECAY scenar diminishing fast Carolina started	- Edon d	ay maty	OG2 DA 4	+ 0 70 OF I	ne iivind	ווומחמ ז	ati∧n i	e loet	umber	of no	I		
Step 1: Create	table fo	r the sce	nario. S	Start with	1 x=0	·			·				
X	9.752		7130	3 .077	1		5	ما	1	7			
Step 2: Write a Note: *The com has gone by.*	milliam ecursive mon ratio	(NOW-N) is the P	ERCEN	ITAGE	for the	scenar as a de	io: ecimal) rema	aining	after	one ti	me pe	riod
•		· () ·	, L(8)									
Cton 2. Mate		_	_	*									

Step 3: Write an explicit equation for the scenario:

Note: *All exponential equations are in the form y=a*bx. a = initial value, b = common ratio*

Step 4: $x =$ the amount of time (or time periods) that have gone by. Choose/substitute an x in order to
solve the question.
Answer: 100,257 people
Note: • For growth scenarios → the common ratio is greater than 1. → Can be found by doing 100% +
(% of increase) then write it as a decimal. For decay scenarios → the common ratio is less than 1. → Can be written as 100% - (% of decrease) then write it as a decimal.
Special Circumstances
Compound Interest Scenario: Mary places \$5000 into a savings account that earns 3.1% interest compounded quarterly. How much money will Mary have in her account after 15 years?
*NOTE: Compound Interest is a special type of GROWTH scenario. To calculate the common ratio: 1 + (% interest written as a decimal / # of times compounded per year) Additionally, x (amount of time) must be multiplied by the # of times compounded per year. Therefore, your final equation looks like: y = a(1+r/n) ^{nx} where a = intial amount, r = interest rate as a decimal, n = number of times compounded per year, and x = amount of time Annually = Quarterly = 4 Daily = 365 Semi-Annually = 2 Weekly = 52.
4=5000 (1+:031)4.15
Answer: $\frac{17945.81}{1945.81}$ Half-Life Scenario: Actinium-226 has a half-life of 29 hours. If 100 mg of Actinium-226 disintegrates of a period of 72.5 hours, how many milligrams will remain? *NOTE: Half-Life is a special DECAY scenario where your common ratio is ½ (because there is ½ remaining). X represents the NUMBER OF HALF-LIFE TIME PERIODS. Be careful with this! $y = 0. \left(\frac{1}{2}\right)^{\frac{X}{1}}$ $y = 100 \left(\frac{1}{2}\right)^{\frac{X}{29}}$ $y = 17.68 \text{ mg}$ Answer: $\frac{17.68 \text{ mg}}{26}$
$y = 100 \left(\frac{1}{2}\right)^{\frac{23}{29}}$ Answer: 17.68 mg (26)

increasing appreciating -

Growth: $y = P(1+r)^t$

decreasing

Final

Decay: y =

rate

time

Compound Interest: $y = P(1 + \frac{r}{n})$

Principal or Initial amount

Semiaunually-1 quarterly-4 & Compounded Continuously: $y = pe^{j}$

Ecler's Number

Compound ed

Half-Life: $y = P\left(\frac{1}{2}\right)$

length of half-life

(27)

Name:	.,		
Date:		 	

Find the value of each investment after "t" years in interest is compounded continuously at the given annual rate "r" on the principal "P". Show your work! A= Pe^{-t}

1 t=2 years, r=7%, P=\$6000

2. t=2.5 years, r=6%, P=\$7500

3. t=5 years, r=3%, P=\$5000

4. Find the "P" principal for the following:

5. You have inherited an emerald ring that had an appraised value of \$2400 in 1971. It is now 2007 and the appraised value of the ring has increased by approximately 6% each year.

a. What is the ring's current value?

b. How long would it take for the ring to reach a value of \$35,000?

6. \$8000 in invested at 10% and compounded continuously.

a. How much money is there after 3 years?

b. How long will it take to for the account to quadruple?

18. There are 80 grams of Cobalt-58 which has a ha	lf-life of 71 days. How many grams will remain
after 213 days? SD $y = 80 (.5)^{\frac{21}{7}}$	
80 A= 80(02),	= 10 @
0.	
20 142	
10 213	
19. You purchased a Mac computer for \$3000 four y	
AAR A CALL	$\frac{800 - 3000 (1 - r)^{4}}{3000} \cdot 7186 = 1 - r$
a. What is the rate at which it is depreciating?	800 = 3000 (1-r)
28.14%	3000
	√4 - 1 (1-r)"2814=-r 12814=-r
b. When was the computer be worth half its original	√ TS - √ (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
1800 = 3000 (1 2814) X	√
· · · · · · · · · · · · · · · · · · ·	
-5=.7186×	X=2.1 years
log .7184 .5=X	0
20. Sarita deposits \$1000 in an account paying 3.4%	annual interest compounded continuously.
a. What is the balance in the account after 5 years?	A=Pert
	034(5)
	A = \$ 1.485.30 /
b. How long will it take the account to reach \$2000?	T = 1485/30 / 1/2
h metter	
2000= 1000 e-064x	A STATE OF THE STA
ln 2 the 034x	· · · · · · · · · · · · · · · · · · ·
X of The X	= 20.39 years
ln 2 = . 034x	
21. Juan invests \$7500 at 7.75% interest for one ye	ar. How much money will he have if the
interest was compounded	The rint
I some is a second of	A=PC(+5)nt
a. yearly? H= 7500 (1+	
a. yearly? $A = 7500 (1 + \frac{0775}{1})$	
~~~ \ 36S	The state of the s
b. daily? A = 7500 (1 + 0775)365	A=Pert
200 C1 300 C	narc()
A = \$104.30	A= 7500 e.0775(1) A=8104.37
00.704	A
	1.5.401.5.1
22. You will deposit \$500 into an account paying 3% c	annual interest compounded continuously
The second secon	Branch Control of the
a. What is the balance after 5 years? $A=500$ Fe	0.03(s) = 580.92
h How long will it take for the halons to be too	DXX ··
b. How long will it take for the balance to reach \$120	1200 = 500e.03x (311)
$\frac{l_{1}2.4 - 03x}{03}$	1 2 J-0 C. 03 K
	year a - 7 - Ken C

# Transforming Exponential Functions

Translate left or

 $g(x) = b^{x+c}$  (graph moves c units left)

right:

 $g(x) = b^{x-c}$  (graph moves c units right)

Vertical stretch or  $g(x) = cb^x$  (graph stretches if c > 1)

compression:

(graph shrinks if 0 < c < 1)

Horizontal stretch or compression:

 $g(x) = b^{ex}$  (graph shrinks if c > 1)

(graph stretches if 0 < c < 1)

Reflections:

 $g(x) = -b^x$  (graph reflects over the x-axis)

 $g(x) = b^{-x}$  (graph reflects over the y-axis)

Translate up or

 $g(x) = b^x + c$  (graph moves up c units)

down:

 $g(x) = b^x - c$  (graph moves down c units)

Part 3: Describe the transformation using the function  $f(x) = 2^x$  as the parent function. Then graph the Junction. For each, identify the domain, range, y-intercept, the asymptote, and the end behavior as  $ilde{
ightarrow} \infty$  and - $\infty$ . horizontal asymptote.







Domain:

Range:

Y-Intercept:

Asymptote: _____

End Behavior:

Domain: _____

Range:

Y-Intercept: _____

Asymptote: _____ End Behavior: _____

Domain: _____

Range:

Y-Intercept: Asymptote: _____

End Behavior: ____

## **Graphing Exponential Functions Notes**

Parent Graph:  $y = b^x$ 



How do I transform exponential functions?

Horizontal H.A. Asymptote H.A.

How do I graph them?





translate up Idown





### **Graphs of Exponential Functions**

Identify the transformations for each of the following functions. Then draw a chart so that you can graph each equation.

1  $y = 2 \cdot 5^{x-4} (4.2)^{x}$ 



Parent Stretch RU Up3

	10000	SHERCH	, PC 14	0(1)
Ì	/ ~	1	/	
Ì	(D, I)	(0.2)	(4.2)	[4,5]
l	7.1.7	1 /	14-1-	1
1	(ic)	(1.10)	1/6 10	(5.13)
ļ	(1,0)	((110)	12/10	



		8
		HAN
2.	$f(x) = 3^x$	(8) HA: 4 - 8

$f(x) = 3^{\circ}$	[ <b>8</b> /
Parent	Down 8
(0,1)	(0,-7)
(1,3)	(1, -5)



3. 
$$y = -(3)^{x+4}$$
 Reflect Left

Parent X axis 4

(0,1) (0,1) -4,-1

(1,3) (1,-3)

L,				Δ.	*							
		.[[.].					Ι	Ĭ	( '			
L.L						T	Ī					
		111		T"	П	ï	1	77				****
	- [ · ] · ·	TTT	""""	" "	m	*****	•		••••		••••	
	1	7777			N	•••		•			••••	
111		·•••••••••••	-	~ <b>!</b> ~~	ŋ			••••		••••	***	****
	··••••••••••••••••••••••••••••••••••••	1	1	··}··	j	·÷		••••	****		•,,,	••••
		†•• <u>†</u> ••†•		∳	ļļ.	+						
	···	·} <del> </del> , <del> </del> -	┪╌╬			·‡.,,						]
		<del></del>	4	4		÷	ļļ					
	- 62		-	+	1	٠.	ب		_			
Minute				4		1.,,,						
- G			1.1.	Λ.	<u> </u>	.1						
			.]].									
				Ι,		1						1
<u>. I I</u>	.1.]			T	1	T	"					
	1 7		T	"T""	17	7	1		····Ì		1	
	"""	.132	h- "	" <b>†</b>		7		j	••••		····i	••••

4. 
$$f(x) = \frac{1}{2}(4)x(-3)$$

Parent | Vertical | Vertical | V | Down |

(0,1) | (0,1/2) | (0,-21/2) |

(1,4) | (1,2) | (1,-1)



Graph. Identify the domain and range for each of the following functions. Then identify the increasing and decreasing intervals.

5. 
$$y = -2 \cdot 3^{x-4}$$



6. 
$$f(x) = 4^{x+2} + 1$$







7. 
$$y = -(2)^{x+1} - 7$$

Parent.	Reflect	Left1	Down7
(0,1)	(O,-1)	(F1,-1)	(-1,-8)
(1,2)	1(1,-2)		



8. 
$$f(x) = \frac{1}{3}(6)^x - 5$$

Parent	1 p. x 1/3	Down 5
Tarent	7 1/1	
(0,1)	(0,1/3)	(O1-47/3)
(1,6)	(1,2)	(1,-3)



Mace, Zero, lett polico Call

a glot broad enter quess enter

Graph the following on your calculator to find the x- and y-intercepts.

9. 
$$f(x) = 5^{x+1} - 2$$

10. 
$$f(x) = \frac{1}{2} \cdot 3^x$$

Find the horizontal asymptote for each of the following functions. Then find the range.

11. 
$$f(x) = -2^{x} (-7)$$
  
 $HA = y = -7$ 

12. 
$$f(x) = \frac{1}{3}(2)^{x-3}$$
  
 $A = 0$   
 $A = 0$   
 $A = 0$ 

14.  $y = -2(3)^x + 5$ 

Bro = 3

16.  $f(x) = 4^{x+1}$ 

Left 1

Base = 4

Reflect xaxs, up 5

Identify the base of the exponent. Then identify all of the transformations for each of the following functions.

13. 
$$y = 2(5)^{x-4} + 3$$

Vertical Stretch × 2, right 4, up3

15. 
$$f(x) = -\frac{1}{3}^{x+6} - 3$$

Base = 
$$\frac{1}{3}$$

Find all of the following for 
$$f(x) = -2(3)^{x+3} + 5$$

19. Find the increasing and decreasing intervals.

List all of the transformations.



log_ax = y is read "log

It is equivalent to  $a^y = x$ 



Practice: Change to the other form:

 Exponential Form	$2^3 = 8$	3-3-1	$7^m = x$	103-1000
Logarithmic Form	100,8=3	$\log_2\left(\frac{1}{8}\right) = -3$	logy X=M	$\log_{10} 1000 = 3$

Now let's use  $f(x) = 10^x$  to explore its inverse,  $f^{-1}(x) = \log_{10} x$ 

1. Complete the table to get the characteristic points of  $f(x) = 10^x$  and then sketch the graph.

4	<u>x</u>	$f(x) = 10^x$
	-1	100
	0	
	1	67

	L	┸	_	┸		L	L	L		1		À.	$\Gamma$	Ī	T	1	Г	T	Т	1
	L	L	Ŀ	L	L				Γ	Г	į.	Г	Т	Г	Т	7	1	Т	T	1
	L		Г	Г	Τ	Г	Г	Т	Т	Т	Г	Г	1	Т		1	1	1	✝	İ
		Г	Т	Т	Т		П	Т	1	Т		г	Т	1	Т	1	<b>†</b>	✝	+	t
	Г	Г	T	1	Т	Т	T	1-	т	1	Г	1	╆┈	-	1	1-	┪	٠	╁┈	i
	_	1	Т	1	T	·-	Т	1	▎▔	1		1	1	1	fΞ	-	<del> </del>	Н	┢	ł
	_	1	1	1	1-	1	Ι-	H	Ι-	1-	46	┝	╁╴	Ė	-	H	┢	┢┑	⊢	ł
	Ī.	┪	┪	۰	1	t	1	1	⊢	Н	7.	H	١.	╁╌	⊢	-	H	┝	┝	ł
	┝┯	┢	┢	H	H	-	╌	⊢	┝	Н	7	-	⊢	┝╾	-	H	-		┝	ŀ
	-	⊢	╁┉	╫╌	<del>-</del> -	Η.	45	_	-	اندا	K.	⊢	ļ	┡	┝	ļ	ļ.	١.	١	ļ
4	-	٠.	-		_	_	-	~10	T. A	7			Ŀ		L.,	_	L			l
1	_		L	L	L_	Ŀ		L						í		. :				ľ
ı				L_	L		L	, i			,									ľ
						Ŀ						1					·			ľ
-1					Ι.						П							Т		ŀ
ı												$\overline{}$	_	_			Н	Τ	Н	ŀ
ı			П		Г		П	П		_	Н	-	_	П	-	Н	Н	-	Н	ŀ
1	_			_		-	$\vdash$	-			-	_	Н,		ш	$\vdash$	-	-	$\vdash$	Ļ

Asymptote: Domain: __

Range: _

2. Complete the table to get the characteristic points of  $f^{-1}(x) = \log_{10} x$  and then sketch the graph.

x	$f^{-1}(x) = \log_{10} x$
	$-\log_{10} x$
9	
	1
1	<u> </u>
[00]	2 -



Asymptote:

Domain:

## Logarithmic Functions Practice

1. Graph the exponential function and its inverse on the grid.

	-5.56	
F.		T.
ŧ,		Ť

$$y = 2^x$$

$$y = \log_2 x$$

Х	У
-1	
	6 0
0	ن عدم
1	6
2	
3	$\langle \zeta \rangle$

	х	у
	6	4
		<del></del>
i	وريون	()
	7	
		7
Ì		
	8	13

											A										
		$\Gamma$	Γ	Ι	Ι	Γ	Ĺ	Ι	Γ	Τ	Τ		Π			Γ	Π	Γ	Τ	Γ	7
	L	L	L	L	L	╧	Ľ	L	Ľ		L		₩,	70				Τ			1
	L	L	Ļ	L	L	L	L	1	L			L	1	_		L					]
	L	_	L	_	L	L	_	L	L	L	L	Ĺ,	ji				L	L.	L		L
	_	L.	L	╄-	╄	↓_	╄	ļ.,	L	L	<b>!</b>	ļ	1	_	L.,	L	L	L	<u> </u>	L	
		-	┞	╀	╄-	┡	╄	Ļ	ļ.,	_	_	1.4	ľ	_	_	L	L	L	L.		]
	┝	┡	-	⊢	╀	ļ.,	├	╀	┡			8	_	H	_	<u>_</u>			7	L	1
	_	_	-	-	┾	-		╀	-	1	, <del>4</del>	ľ		ر خون		gr ii	rec:	_	7	ļ	
		느	_	_	<u></u>	L	1	1			N.	1		1.50					1 :		t
			i .	Ι	Т	Т	1	1.0		100	-	4	pt 3.E	-		├	┢	╌	<del>                                     </del>	├	ł
4					_			×	ur=	اس	L	1	,ex	_							
₩			_					*	92.5	П	7	1		_							•
*			_					*	92.00		7	F		_							•
•									u 2 - 5		7	F		_							•
*			_								1	F		_							•
•			_						97**		1	F		_							•
•			_						20.75			F		_							
•			_						97**			F		_							•
•			_						87-5			F		_							

2. Graph the exponential function and its inverse on the grid.

у	_	$\left(\frac{1}{2}\right)^x$
		\4/

$$y = \log_{\frac{1}{2}} x$$

X	У
-3	3
ore ques	0 mm
and the second	l'on
	هددوس
,	erozz.

X	у
3	
day.	
6,000	<b>1</b>
P	0
2	



3. List the characteristic points of  $y = \log_{10} x$ .

<i>p</i>	<b>6</b> 155	6.	0
-(10.		( I 4	0
V 0			

1. Describe in your own words what happens to the graph of  $f(x) = \log_2 x$  under the given transformations, then graph.

N. S. A.	$\frac{1}{2}$ (1,0) (2,1)(8,3)			
V.S	Base Graph: $f(x) = \log_2 x$	$f(x) = \log_2(x) + 3$	$f(x) = \log_2(x - 2)$	$f(x) = \log_2(x-2) + 3$
Ì	Transformations: None	Transformations:	Transformations:	Transformations:
		UP3	right 2	right 2 Up 3
	Asymptote: X=0	Asymptote: X = O	Asymptote: X=2	Asymptote: X=2
2.0	Intercept(s): (10)	Intercept(s):	Intercept(s): (3,0)	Intercept(s): (2 1, 0)
2	Domain: (O, 🐼)	pomain: (0,00)	Domain: $(2, \infty)$	Domain: $(2, \infty)$
16,08293	Range: $(-\infty,\infty)$	Range: (-0),03)	Range: (-oo, os)	Range: (- 05,00)

Describe the transformations of  $y = 4 \log_x(x - 7) + 6$  from the parent function  $f(x) = \log_2 x$ .

dilate, vertical stretch × 4

$$0 = \log_{2}(k-2) + 3$$

$$-3 = \log_{2}(k-2)$$

$$2^{-3} = k-2$$

$$+2 + 2$$

3. Describe the transformations of  $y = -\frac{1}{5}\log_{10}(x+3) - 2$  from the parent function  $f(x) = \log_{10} x$ .

$$\frac{+2}{2+\frac{1}{2}} = X$$
 $\frac{2}{3} = X$ 

0=log_(x)+3 x axis

tlect dila

vertical compression

Porent  $y=\log_{10} X$  (10,1) (118) Determine the transformations as compared to the base graph,  $y=\log_{10} x$ . Graph each function on the coordinate

planes provided. Determine the domain, range, and asymptotes of each transformation. 6.  $y = \frac{1}{2} \log_{10} x$ 4.  $y = \log_{10} x - 6$ 5.  $y = -\log_{10}(x+2)$ Transformations: Transformations: Transformations: reflect kaxis vertical compression downlo left2 Asymptote: X=0 Asymptote: Asymptote: Domain:  $(-2, \infty)$ (0,0) (Q 00) Domain: Domain: (-0,0) (-0,0)  $(-\infty, \infty)$ Range: Range: Range:

## Inverses of Logarithms

Date_____ Period

Find the inverse of each function.

1) 
$$y = 2 \log_x 3$$
  $x = 2 \log_y 3$   $y = 3^{\frac{2}{x}}$   $y = 3^{\frac{2}{x}}$ 

$$y = 3^{x}$$

$$y = 3^{2}/x$$

$$y = 3^{2}/x$$

$$y = \log_{2} x^{3}$$

$$y = 2^{\frac{x}{3}}$$

5) 
$$y = \log_6(3x)$$
  $x = \log_6(3y)$   

$$y = \frac{6^x}{3}$$
 
$$\frac{6^x}{3} = \frac{3y}{3}$$

$$\frac{6^x}{3} = y$$

6) 
$$y = \log_4 x + 10$$
  $X = \log_4 y + 10$   
 $y = 4^{x-10}$   $X - 10 = \log_4 y$   
 $y = 4^{x-10} = y$ 

7) 
$$y = \log_2 x + 6$$
  $X = \log_2 y + 6$   
 $y = 2^{x-6}$   $X - 6 = \log_2 y$   
 $2^{x-6} = y$ 

8) 
$$y = \log_6 x - 7$$
  $X = \log_6 y - 7$   
 $y = 6^{x+7}$   $X = \log_6 y - 7$   
 $X = \log_6 y - 7$   
 $X = \log_6 y - 7$   
 $X = \log_6 y - 7$ 

9) 
$$y = \log_{x} 2 - 6$$
  $X = \log_{y} 2 - 6$   
 $y = 2^{\frac{1}{x+6}}$   $X+6 = \log_{y} 2$   
 $X+6 = \log_{y} 2$ 

10) 
$$y = 4 \log_{x} 2$$
  $X = 9 \log_{x} 2$   
 $y = 2^{\frac{4}{x}}$   $X = \log_{x} 2^{4}$   
 $x = 109 y^{2}$   
 $x = 109 y^{2}$   
12)  $y = -6 \log_{x} 5$ 

-1-

11) 
$$y = \log_5(x+5)$$
  
 $y = 5^x - 5$   
 $y = 5^x - 5$   
 $5^x = y+5$   
 $5^x - 5 = y$ 

$$x = 6 \log_{y} 5$$
 $x = 6 \log_{y} 5$ 
  $y = 2^{\frac{1}{x}}$ 

$$x=10^{\frac{9}{2}}$$

13) 
$$y = 10^{\frac{x}{2}}$$

$$y = \log x^{2}$$

$$2 \cdot \log_{10} x = \frac{y}{2} \cdot 2$$

$$00 \quad X = \frac{9}{2} \cdot 7$$

15) 
$$y = 3^x + 4$$
  $\log_{10} x^2 = y$ 

$$y = \log_3(x - 4)$$

$$x = 39 + 4$$

$$x-4 = 3^{9}$$

$$y = \log_3(x-4)$$
  $\chi = 3^3 + 4$ 

17) 
$$y = 4^{\frac{x}{2}}$$
  
 $y = \log_4 x^2$   $x = 4^{\frac{x}{2}}$ 

17) 
$$y = 4^{\frac{\pi}{2}}$$

$$x = 4^{\frac{3}{2}}$$

$$2 \cdot \log_4 x = \frac{5}{2} \cdot 2$$

$$\log_4 x^2 = y$$

19) 
$$y = \left(\frac{\left(\frac{1}{4}\right)^x - 5}{-2}\right)^{\frac{1}{3}}$$

$$y = \log_{\frac{1}{4}} \left( -2x^3 + 5 \right)$$

14) 
$$y = 4^{\frac{x}{3}}$$
  $\chi = 4^{\frac{9}{3}}$ 

$$X = 4^{\frac{5}{3}}$$

$$y = \log_4 x^3$$
 3.  $\log_4 X = \frac{9}{3} \cdot 3$ 

16) 
$$y = x$$

$$y = x$$

18) 
$$y = 6^x + 2$$
  
 $y = \log_6 (x - 2)$ 

$$x = 6^9 + 2$$

20) 
$$y = \left(\frac{5^x - 9}{-3}\right)^{\frac{1}{2}}$$
  
 $y = \log_5 \left(-3x^2 + 9\right)$ 

21) 
$$y = \left(\frac{4^x - 3}{4}\right)^{\frac{1}{4}}$$
  
 $y = \log_{4}(4x^4 + 3)$ 

22) 
$$y = \left(\frac{e^x - 10}{4}\right)^{\frac{1}{5}}$$
  
 $y = \ln(4x^5 + 10)$ 

23) 
$$y = \left(\frac{6^x + 10}{-2}\right)^{\frac{1}{3}}$$
  
 $y = \log_6 \left(-2x^3 - 10\right)$ 

24) 
$$y = \left(\frac{5^x + 8}{4}\right)^{\frac{1}{3}}$$
  
 $y = \log_5 (4x^3 - 8)$ 

## Logarithms and Exponential Functions as Inverses

Find the inverse of each function.

$$1) \ \ y = \log \left(-2x\right)$$

3) 
$$y = \ln x - 6$$

5) 
$$y = -6 \log_3 x$$

7) 
$$y = \log_2 x$$

9) 
$$y = \log_5 \frac{-4^x + 2}{2}$$

11) 
$$y = \log_4 \frac{10^x - 2}{2}$$

13) 
$$y = \frac{\sqrt[3]{-2 \cdot 6^x - 2}}{2}$$

15) 
$$y = \frac{\sqrt[5]{2 \cdot 3^{x+1} + 1}}{\sqrt[5]{4 \cdot 3^x}}$$

2) 
$$y = \log_2(x - 4)$$

4) 
$$y = \log x + 2$$

6) 
$$y = -3 \log_5 x$$

5) 
$$y = -6 \log_3 x$$
  
6)  $y = -3 \log_5 x$   
7)  $y = \log_2 x^2$   
8)  $y = \log_2 x^4$ 

10) 
$$y = \frac{\sqrt[4]{8e^x + 8}}{2}$$

12) 
$$y = \log_2 \frac{-8 \cdot 5^x + 1}{-4 \cdot 5^x}$$

14) 
$$y = \frac{\sqrt{2^x + 5}}{2}$$
.

16) 
$$y = \frac{\sqrt[4]{-8 \cdot 10^x - 40}}{2}$$

Identify the domain and range of each. Then sketch the graph.

17) 
$$f(x) = \log (x+1) + 5$$



19) 
$$f(x) = \log_{10}(x-2) - 5$$



$$18) \ f(x) = \ln_{2}(x-2)$$



20)  $f(x) = \ln(x-1) - 1$ 



## Sketch the graph of each function.

21) 
$$f(x) = \frac{1}{4} \cdot \left(\frac{1}{2}\right)^{x-1} - \frac{1}{2}$$

22)  $f(x) = 5 \cdot 2^{x+2} + 2$ 



p (0,1)(1,0) stroll 05. (0,5) (1,10) L2 (-2,5) (-1,10)

UZ (-2,7) (-1,12)



yint (0,-1/2)

=== (2)-1

23) 
$$f(x) = 2 \cdot 3^{x+2} + 1$$

24)  $f(x) = 3 \cdot \left(\frac{1}{2}\right)^{x-2} + 2 + 4 + 2 = 2$ 



y= 19



vame:	
Date:	Period:

1. For each of the following functions, state the equation of the base function, the transformations from the base function, the domain, range, asymptotes. If the function is exponential, determine if it is a growth or decay model. Then graph each function.

	model. Then graph each function.		
	a. $y = \left(\frac{1}{2}\right)^{x+2} + 3$	b. $y = (2)^{x-1} - 4$	c. $y = -log_2(x-4) + 5$
	Base Function: $y = (\frac{1}{2})^x$	Base Function: $y = 2^{x}$	Base Function:
	Transformations:	Transformations:	Transformations: .
	left 2 1 up3.	right 1, down 4	reflet x axis right 4, up 5
	Domain: $(-0,0)$	Domain: $(-\infty,\infty)$	Domain: (4,00)
	Range: (3, 00)	Range: (−4,∞)	Range: (-0), (2)
	Asymptote: 4 4=3	Asymptote: $V = -4$	Asymptote: X=4
	Circle One: Growth of Decay	Circle One: Growth or Decay	
	10 8 8 -10, 8, 6, 44, 2, 2, 4, 6, 8, 40 -2, -4, 4, -4, -4, -4, -4, -4, -4, -4, -4,	-0.8.6.4.2.2.4.6.8.10 -6.8.6.4.2.9.4.6.8.10	-101-8 -6 -4 -2 -2 -4 -6 -8 -10 -4 -101-8 -6 -4 -2 -2 -4 -6 -8 -10 -6 -101-8 -6 -4 -2 -2 -4 -6 -8 -10
- !			I

2. Use the rules of exponents and/or logarithms to find the value of x in each equation. Round to the nearest hundredth when necessary.

a. 
$$(3^{2x})(3^{12}) = 3^{20}$$
  
 $3^{2x+12} = 3^{20}$   $2x=8$   
 $2x+12=20$   $x=4$ 

d. 
$$(25^{2x})(5^{7}) = 125^{4}$$
  
 $5^{2\cdot 2x} \cdot 5^{7} = 5^{3\cdot 4} \quad 4x = 5$   
 $5^{4x+7} = 5^{12} \quad x = 5/4$   
 $4x + 7 = 12$ 

g. 
$$(49^{2x})(7^8) = 1$$
  
 $7^{2.2} \times 7^8 = 7^0$   
 $7^{4x+8} = 7^0$   
 $4x+8=0$   
 $10^{x+4} = 100,000,000$ 

b. 
$$\frac{5^8}{5^{2x}} = 5^{10}$$
  $\frac{-2 = 2x}{5^{8-2x} = 5^{10}}$   $\frac{-1 = x}{5^{8-2x} = 10}$ 

e. 
$$\frac{9^{5x}}{3^{2x}} = 81^{12} \rightarrow 3^{4 \cdot 12}$$
  
 $\frac{3^{2 \cdot 5x}}{3^{2x}} = \frac{3^{10x}}{3^{2x}} = 3^{8x} = 3^{48}$   
 $8x = 4^{1}$ 

h. 
$$(25)^{\frac{1}{2}}(3)^4 = x$$
  
 $5 \cdot 81 = x$   
 $405 = x$ 

k. 
$$6(10)^{5x} = 18,000$$
  
 $10^{5x} = 3000$ 

c. 
$$(13^4)^x = 13^{24}$$
  
 $13^4x = 13^{24}$  (x=6)  
 $4x = 24$ 

f. 
$$(8^4)^x = 4^{18}$$
  
 $2^{3\cdot4\cdot x}$   $2^{2\cdot18}$   $(2x=36)$   
 $2^{12x} = 2^{36}$   $(x=3)$ 

i. 
$$(6^{\frac{1}{2}})(36^{\frac{3}{2}}) = 6^{x}$$
  
 $6^{-2} \cdot 6^{2 \cdot 3} = 6^{x}$   
 $6^{-2} \cdot 6^{3} = 6^{x}$   
 $6^{-2} \cdot 6^{3} = 6^{x}$ 

$$1. \ 10^{3x-4} = 1,000$$

$$10^{3x-4} = 10^3$$
 $3x-4=3$ 
 $3x=7$ 

The principal amount of deposit is \$1640. It has an interest rate of 3.2% compounded A= 1640 quarterly. Write a function and graph it. _

A= 1640 (1.008)4x

Graph & look@ table

From the graph, give an approximation of the balance after 3 years. \$ 1804.

What is the balance to the nearest hundredth after 6 years? \$1985.62

The principle amount of deposit is \$1350. It has an interest rate of 4.6% compounded monthly. Write a function and graph it.



From the graph, what is the approximate balance after 7 years?

1861.70

What is the balance to the nearest hundredth after 10 years?

\$ 2136.62

1. Graph  $f(x) = -\log_{10} x$ 



reflect Xaxis



Domain: (0,00) Range: (-0, 0)

Asymptote: X=0

Domain: (0,0) Range:  $(-\omega, \sigma)$ 

Asymptote: X = 0

2. Graph  $g(x) = \log_{10}(-x)$ 



Domain:  $(-\infty, 0)$ 

Asymptote: X = 0

4. Graph  $f(x) = \log_{10}(x+4) - 2$ 



Domain: (-4, 00)

Range: (-66, 00)

Asymptote: X = -4

 $\log 10 = \frac{\log 10^{1}}{\log 100} = \frac{\log 1000}{\log 1000} = \frac{\log 10^{3}}{\log 1000} = \frac{3}{\log 1000} = \frac{1.6021}{\log 1000} =$ 

Common Logs - have base 10 ... "log x" means log base 10 of x

1091040=x 10x=40